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1 Introduction 

Research on smart environments covers a broad range of topics and applications which 

require expertise from many disciplines [1]. Smart environments are used to improve energy 

efficiency and increase quality of life while being home [2]. They can also be exploited to provide 

more complex and more specialized services such as the recognition of faces in the workplace to 

assess the mood of employees (emotion recognition) or even to provide continuous healthcare 

support. Healthcare support is generally accompanied of security services and monitoring of 

ongoing Activity of Daily Living (ADL) [3]. ADLs compose a set of common activities that a 

normal person is supposed to be able to realize to be qualified as autonomous [4, 5]. The 

performance in the realization of ADLs is a good indicator of the state of the resident and can help 

an artificial intelligence to provide punctual adequate support services automatically [6]. In order 

to exploit the information related to the ADLs, the smart home must possess an intelligent software 

capable of deducing the action plan and the intended goal of the resident. That task is a well-known 

problem in research called the activity recognition challenge [7, 8].  

Activity recognition is defined as the process of identifying a sequence of actions from 

sensors data and matching them to the corresponding model of ADL. In a smart home context, it is 

generally qualified as keyhole since the observation is performed unbeknown to the resident [9]. 

The difficulty of activity recognition in the smart home context lies in the fact that the basic actions 

cannot be directly observed. The sensors data are generally sparse and noisy, the source is multi-

modal and preprocessing is necessary in order to use the data. Despite this, the classical approaches 

to this problem were mostly logic based. While there is no consensus on the classification of the 

activity recognition methods, they are usually grouped under the knowledge driven and the data 

driven approaches. Knowledge driven approaches were first investigated and generally make 

assumption that a complete plans library exists to recognize the activities. That library can be 

encoded with first-order logic [10], description logic [11], ontologies [12] or any other formalisms. 

It can also be described by probabilistic models such as Hidden Markov Model (HMM) [13] or 

Bayesian network [14] which represents well the uncertainty level in the decision process. The 



main problem with knowledge driven approaches is the hard assumption they make on the plans’ 

library that pose fundamental limits to the implementation of such algorithms in real deployed 

smart home [15]. First, the construction of the library is performed by a human expert and it can 

grows very complex within a small set of few ADLs. Second, the library is static; that is, it cannot 

evolve over time and adapt to the profile of the residents. Finally, it is generally assumed that the 

library is complete (i.e.: contains all possible ADLs). However, there are endless way to perform 

an ADL and there is a large number of possible ADLs a human can perform in his daily life. These 

problems often hamper the ability of researchers to deploy real-world activity recognition 

algorithms. 

One avenue of solution to these limitations lies within the second family of methods: the 

data-driven approaches [16]. They consist to exploit data mining algorithms to learn the models 

corresponding to the set of ADLs instead of presupposing their existence [17]. Using data mining 

for that purpose is challenging, but the advantages would be numerous. First, the plans’ library 

could be built automatically. Second, this library could evolve with upcoming data from the sensors 

and adapt to the particular profile of the resident (e.g.: If he is suffering from Alzheimer, his state 

will slowly worsen over time). Third, the deployment of an assistive smart home would require less 

intervention from human experts. Indeed, it is near impossible to clearly define how the sensors are 

bounded to basic actions and thus a data mining solution could adapt automatically. We have to 

keep in mind that the configuration of a new smart home is time-consuming and costly. Finally, the 

same solutions could be exploited to create tools that could enables the healthcare professionals to 

perform a closer and better monitoring of the state of the residents [18]. In this chapter, we introduce 

the reader to the main data mining approaches and the works of researchers that applied them in 

the smart home context. Our goal is to provide understandable material to exploit data mining for 

activity recognition in a smart home. This chapter can be seen as an introductory tutorial on the 

subject and be used as a basis for further development and research. 

The remainder of this chapter is divided as follow. Section 2 discusses the general knowledge 

related to data mining. It defines what it is and describe the main challenges related to research and 

application of data mining. Section 3 introduces the reader to the decision trees. The principles are 

reviewed along with the main limitations for their application in smart home research. Section 4 

covers the association rules mining algorithms. Again the basic principles are reviewed and the 

main works related to smart home research are reviewed. Section 5 investigates clustering for 

activity recognition. The main algorithms are explained and examples of their applications are 

provided. An opening on spatial data mining algorithms concludes the section. Finally, section 6 



discusses the main challenges for smart home research in the next decades and concludes the 

chapter. 

2 Data Mining Primers 

Data mining is the set of methods and algorithms allowing the exploration and analysis of 

database [19]. It exploits tools from statistics, artificial intelligence and SGBD. Data mining is used 

to find patterns, association, rules or trends in datasets and usually to infer knowledge on the 

essential part of the information [20]. It is often seen as a subtopic of machine learning. However, 

machine learning is typically supervised, since the goal is to simulate the learning of known 

properties from experience (training set) in an intelligent system. Therefore, a human expert usually 

guides the machine in the learning phase [21]. Within realistic situations, it is often not the case. 

While the two are similar in many ways, generally, in data mining, the goal is to discover previously 

unknown knowledge [22] that can then be exploited in intelligent systems and business intelligence 

to take better decisions. 

The complete process of data mining is illustrated on Figure 1. Before beginning the cycle, 

it is important to understand the context and the data related to our situation. For example, what is 

the goal of the data mining? What are the consequences of errors? Are they insignificant (e.g.: 

marketing decision for a new product) or critical (e.g.: healthcare decision support service)? 

Considering the nature of the data available is also important but usually for the design of the data 

mining strategy. First of all, what types of attributes are interesting? Is there any strong association 

between two attributes? Those are examples of questions one should try to answer before even 

beginning the data mining cycle. Once this preliminary phase is accomplished, the data mining can 

begin. The first step is to collect and clean the data from potentially more than one source, which 

can be devices, sensors, software or even websites. The goal of this step is to create the data 

warehouse that will be exploited for the data mining. The cleaning is often not necessary. However, 

sometime the data might be composed of noisy elements easy to remove or of attributes/objects 

that are known to be uninteresting for our current research. The second step consists in the 

preparation of the data in the format required by the data mining algorithm. Sometime in this step, 

the numerical values are bounded or discretized; other time, two or more attributes can be merged 

together. It is also at this step that high level knowledge (temporal or spatial relationships, etc.) can 

be inferred for suitable algorithms. For example, the team of Jakkula & Cook [23] exploited the 

temporal relationship of Allen [24] for association rules mining. These relations were extracted 

during a preparation step prior to the data mining phase. The next step is the data mining itself. It 

is important to choose or design an algorithm for the context and the data. There are many 



algorithms to be used that we will discuss in the next sections. These algorithms are generally 

grouped under three main families: decision trees, association rules and clustering.  

Finally, the data mining step should results in a set of models that need to be evaluated. In a 

supervised context, it is usually easily done with statistical methods such as the F-Measure, K-

Statistic or the ROC curve [19]. However, in an unsupervised context it is often required to design 

more complex validation methods. If the evaluation is not conclusive enough, the cycle can be 

repeated until we are satisfied. Indeed, data mining is a method that often does not give expected 

results the first time. Note that the collection and cleaning step is generally done only once 

regardless of the results. 

 
Figure 1: The overall data mining process 

2.1 Supervised and unsupervised learning 

Whether we talk about data mining method or machine learning in general, the process is 

usually classified under different categories [25]. The first one is supervised learning. The method 

is said supervised since it is based on training dataset with labeled examples or classes. The 

signification is that the algorithm can create a model that describes each class by using the known 

answers in the training set. In that situation, the idea is to generalize a function that maps the input 

to the output, and that can be used to generate output for previously unseen situations. The main 

implication is that somehow a human expert on the subject must label the dataset. On the opposite, 

unsupervised learning [21] works by using unlabeled examples. The idea is then to find hidden 

structure or association within the dataset and generalize a model from it. The results are sometime 

disappointing whether or not hidden knowledge exists in the dataset, but also sometime very 

surprising as the users do not know necessarily what they look for. The main implication is that 

there is no reward signal to evaluate the potential solutions. Unsupervised learning is often much 

harder to implement. Some researchers also use the name semi-supervised learning to describe their 

models. In that case, it usually means that the training set is partially labeled. However, it is also 



used to mean that unsupervised learning was applied on a training set divided into several classes 

by a human or an algorithm [26]. 

3 Decision Trees 

In the field of data mining, we generally classify all the algorithms under three main 

categories: decision trees, association rules and clustering. The general idea behind decision trees 

(DTs) is to take a large set of data and find the most discriminative properties to take classifying 

decisions from. In order to do that, the training set must be labeled (i.e. each entry must have the 

corresponding class it belongs to). In that sense, decision trees are supervised algorithms as we 

defined it in the introduction. From that data set, the algorithm will generally go through each 

attribute and choose, using a heuristic, the one that best divides the instances. It will then divide the 

data entries using that attribute and repeat the operation for the newly created nodes. However, it 

is necessary to prevent overtraining. If the DT fits to closely the data, it might be impossible to 

classify new instances (unknown). The Figure 2 shows an over fitting versus a representative 

model.  

 

Figure 2: (a) Over fitting the data points. (b) A more interesting and simpler model. 

 

To prevent over training, a decision tree classifier needs to have a stop condition. That 

condition can be: a maximum branching factor, all attributes are used, number of instances per 

node, etc. The classification of new instances is then simply performed by following the tree until 

reaching a leaf. In the next subsection, we will review two of the most important algorithms that 

are exploited to construct a decision tree. 

3.1 ID3 

To illustrate the basic ideas behind decision trees, let us have a closer look over a well-

known algorithm. The algorithm that we wanted to present is called Iterative Dichotomiser 3 or, 

more commonly, ID3 [20]. This precursor of the well-known C4.5 is an algorithm used to generate 

a decision tree from the top to down without backtracking. To select the most useful attribute for 

classification, a criterion named the information gain based on the information theory is exploited. 



The information gain of a given attribute 𝑋 with respect to the class attribute 𝑌 is the reduction in 

uncertainty about the value of 𝑌 when we know the value of 𝑋. In order to calculate the information 

gain we need to know the information entropy. If 𝐸(𝑆) is the information entropy of the set 𝑆 and 

𝑛 is the number of different values of the attribute in 𝑆, and 𝑓𝑠(𝑖) is the frequency of the value 𝑖 in 

the set 𝑆, then the information entropy is calculated according to the following formula (1): 

(1) 
𝐸(𝑆) = − ∑ 𝑓𝑠(𝑖)𝑙𝑜𝑔2(𝑓𝑠(𝑖))

𝑖=𝑛

𝑖=1

 

The entropy is always a number comprised between 0 and 1 inclusively. If all the examples are 

in the same class, the entropy of the population is nil. If there is the same number of positives and 

negative examples in binary classification, the entropy is maxed. The best attribute is selected based 

on the information gain factor that is given by the following formula (2): 

(2) 
𝐺(𝑆, 𝐴) = 𝐸(𝑆) − ∑ 𝑓𝑠

𝑚

𝑖=1

(𝐴𝑖)𝐸(𝑆𝐴𝑖
) 

Where  𝐺(𝑆, 𝐴) is the gain of the set 𝑆 after a split over the 𝐴 attribute, 𝑚 refers to the 

number of different values of the attribute 𝐴 in 𝑆, 𝑓𝑠(𝐴𝑖) is the frequency of the items possessing 

𝐴𝑖 as 𝑖𝑡ℎ value of A in 𝑆 and 𝑆𝐴𝑖
is a subset of 𝑆. There are three requirements for the training data 

of ID3 algorithm. The first one is that all of the training data objects must have common attributes, 

and these attributes should be previously defined. The second requirement is that the attributes’ 

values should be clearly indicated and a value indicating a special attribute should indicate no more 

than one state. The third requirement is that there must be enough test cases to distinguish valid 

patterns from chance occurrences. The Algorithm 1 details the ID3 process: 

Algorithm 1: ID3. 

Input:  𝑆 learning data set; the set of attributes 𝐴 = {𝑎𝑗𝜖{1, … , 𝑝}} where 𝑝 is the number of 

attributes remaining 

If all elements in 𝑆 are positive Then 

 Add 𝑟𝑜𝑜𝑡 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

Return 𝑟𝑜𝑜𝑡 

End 

If all elements in 𝑆 are negative Then 

 Add 𝑟𝑜𝑜𝑡 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

Return 𝑟𝑜𝑜𝑡 

End 

If 𝐴 = ∅ Then 

 Add 𝑟𝑜𝑜𝑡 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

Return 𝑟𝑜𝑜𝑡 

End 

 

Set 𝑎∗ = 𝑎𝑟𝑔 max
𝑎𝜖𝐴

𝑔𝑎𝑖𝑛(𝑆, 𝑎) 

Set 𝑟𝑜𝑜𝑡 = 𝑎∗ 

For all values 𝑣𝑖 of 𝑎∗ 

 Add a branch to 𝑟𝑜𝑜𝑡  corresponding to 𝑣𝑖 



Create 𝑆𝑎∗=𝑣𝑖
⊂ 𝑆 

If 𝑆𝑎∗=𝑣𝑖
= ∅ Then 

 Put a leaf with the most common value of the class among 𝑆 

at the extremity of this branch 

Else 

 Put ID3(𝑆𝑎∗=𝑣𝑖
,𝐴 − {𝑎∗}) at the extremity of this branch 

End 

End  

 

ID3 possesses the advantage that it is fast, and it builds short trees. Nevertheless, if a small 

sample is tested, only one attribute at a time is tested for making a decision, and classifying 

continuous data may be computationally expensive. As any other DT algorithm, data may be over-

fitted or over-classified by ID3.  The classes created by ID3 are inductive, meaning that, given a 

small set of training instances, the specific classes created by ID3 are expected to work for all future 

instances. A limitation of ID3 is that the distribution of the unknown conditions must be the same 

as the test cases, and the induced classes cannot be proven to work in every case since they may 

classify an infinite number of instances. 

3.2.1 Example of construction of a DT 

To show the main characteristics of the construction of a decision tree with ID3, we will 

exploit the example dataset found on Table 1.  

Table 1: Example dataset 

Meal Filling Size Pattern Class 
Poutine Ketchup Small Filled BBQ 

Hot-Dog Mustard Small Filled BBQ 

Hot-Dog Ketchup Small Striped Oven 

Pizza Mustard Big Striped BBQ 

Poutine Mustard Big Striped BBQ 

Hot-Dog Ketchup Medium Filled BBQ 

Pizza Mayonnaise Big Striped Oven 

Pizza Ketchup Medium Striped Oven 

 

From this dataset 𝑆, the overall entropy would be: 

𝐸(𝑆) =
5

8
𝑙𝑜𝑔2 (

5

8
) +

3

8
𝑙𝑜𝑔2 (

3

8
) ≈ 0.9544 

To construct the tree, we would then need to calculate the information gain for each attribute. 

For example, the calculation for the attribute Filling would be: 

𝐺(𝑆, 𝐹𝑖𝑙𝑙𝑖𝑛𝑔) = 𝐸(𝑆) − (
4

8
E(2,2) +

3

8
E(3,0) +

1

8
E(0,1)) 

𝐺(𝑆, 𝐹𝑖𝑙𝑙𝑖𝑛𝑔) = 𝐸(𝑆) − (
4

8
∗ 1 +

3

8
∗ 0 +

1

8
∗ 0) 

𝐺(𝑆, 𝐹𝑖𝑙𝑙𝑖𝑛𝑔) = 𝐸(𝑆) − 0.5 ≈ 0.4544 

Note that there are three entropy calculations made for each possible value of the attribute. 

For instance, the 
4

8
E(2,2) is the part for Ketchup and 4 out of 8 are octagonal. The 2,2 means that 



two of the Ketchup data entries are for BBQ and two are for the Oven. The gain of the three others 

attributes would be: 

𝐺(𝑆, 𝑀𝑒𝑎𝑙) = 𝐸(𝑆) − (
2

8
E(2,0) +

3

8
E(2,1) +

3

8
E(1,2)) ≈ 0.2657 

𝐺(𝑆, 𝑆𝑖𝑧𝑒) = 𝐸(𝑆) − (
3

8
E(2,1) +

2

8
E(1,1) +

3

8
E(2,1)) ≈ 0.0157 

𝐺(𝑆, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛) = 𝐸(𝑆) − (
3

8
E(3,0) +

5

8
E(2,3)) ≈ 0.3476 

As it can be seen, the Filling would give the highest information gain, thus it is chosen as the 

root of our DT. The tree would have three branches after this first iteration as shown on Figure 3. 

 

Figure 3: The DT after one iteration. 

 

Now, only the Ketchup branch does not enable to clearly classify the population of the 

training set. The entropy of the ketchup subset (𝑆𝑘𝑒𝑡) must be calculated and then the information 

gain for the remaining attributes. In that case, the calculation would be: 

𝐺(𝑆𝑘𝑒𝑡, 𝑀𝑒𝑎𝑙) = 𝐸(𝑆𝑘𝑒𝑡) − (
1

4
E(1,0) +

2

4
E(1,1) +

1

4
E(0,1)) = 0.5 

𝐺(𝑆𝑘𝑒𝑡, 𝑆𝑖𝑧𝑒) = 𝐸(𝑆𝑘𝑒𝑡) − (
2

4
E(1,1) +

2

4
E(1,1)) = 0 

𝐺(𝑆𝑘𝑒𝑡, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛) = 𝐸(𝑆𝑘𝑒𝑡) − (
2

4
E(2,0) +

2

4
E(0,2)) = 1 

As we can see, the Pattern value gives a maximal information gain for the subset 𝑆𝑘𝑒𝑡 and 

thus it is chosen to construct the DT. The final decision tree is illustrated by the Figure 4.  

 

Figure 4: The resulting decision tree for the example dataset. 



3.2 Variant of the decision tree 

Over the time, many variant of the basic decision tree have been developed. However, the 

basic idea is always similar to what we have shown until now. In this sub-section, we describe one 

of them that is interesting for the advanced usage that was made of it. Section 3.1 presented the ID3 

algorithm as a tree that was prompt to over fit the data. One way to avoid over fitting is by providing 

more training data. But, acquiring enough data is not always possible due to time or money 

constraint. Another way to prevent over training is to only consider a subset of the available 

information when training the model. Of course, this subset must be chosen wisely, in a certain 

way that will not miss important things. 

This idea of considering only part of the data led to the tree called Random Tree (RT). The 

RT works exactly like ID3, with the simple difference that, at each node, only of subset of the 

attributes is considered for the information gain. The subset is chosen randomly at each node and 

we only compute the entropy for attributes in this subset. This means the split of a given node might 

not be optimal, thus reducing the chances of over fitting. Indeed, ID3 suppose that the future data 

will always have the same distribution over its attributes to classify. By not using the best split 

attribute, we can weaken the importance of this supposition in the final accuracy.  

As we said, the key point of the random tree is to choose the attributes that will be used by 

this line of the previous pseudo-code of ID3: 

(3)    Set 𝑎∗ = 𝑎𝑟𝑔 max
𝑎𝜖𝐴

𝑔𝑎𝑖𝑛(𝑆, 𝑎) 

 There are many ways to do so. Let’s call 𝑘 the number of attributes we chose at a given 

node. 𝐴 is again the set of all attributes and 𝐵 is the subset. One common way is to randomly pick 

𝑘 times an attribute 𝑎 from 𝐴 without repetition. At each step, each remaining 𝑎 as the probability 

1

|𝐴|−|𝐵|
 of being chosen. The last remaining point is to choose the value for 𝑘. Again, one common 

way is the have a varying 𝑘 that will adjust its value to number of remaining attributes as in: 

(4)     𝑘 =  int(log2(|𝐴| + 1)) 

We now have a simple tree that is not optimal but that should still be doing well with a good 

value of k and true randomness. With true randomness, there is no way of predicting what tree will 

be constructed. Thus, there are many possible trees for the same data. Is one really better than the 

other? If so, could we still consider the other when classifying? If they could work together, might 

the accuracy improve? These questions, among others, led to the creation of the Random Forest 

(RF) algorithm. The idea is simple: train many RT, let’s say 𝑁, and make them vote for the class 

they think best represents a given instance. The number of RT is then another hyper-parameter that 

must be optimised, along with 𝑘 and the ones present in ID3. A large 𝑁 might over fit the data, 

while a small N might not improve over a single RT. 



3.3 The Work of Stankovski 

Stankovski is one of the researchers that has applied the decision trees algorithm in a smart 

home context [27]. As for any DT based system, a first step consisted of building a supervised 

dataset. In that case, the dataset contained the whereabouts of a person; interactions with appliances, 

duration, etc. The DT was created so the usual rules describing the normal setting leading to a 

particular event in the smart home could be known. The events occurring outside the normal setting 

were considered as abnormal behaviors, and in that case assistance could be triggered (alarm, 

message, etc.). To create the training dataset, heavy human expert intervention was required. After 

that the observations are gathered, the expert needs to specify two more data fields. For each record 

of observation, he needs to assign an activity and mark which records are normal (usual). The 

construction of the decision tree is done with ID3. The Figure 4 below shows a part of the decision 

tree built by Stankovski from a dataset of 35 examples. 

 

Figure 4: A part of a decision tree induced in [27]. 

 

3.4 The work of Bao & Intille 

Bao & Intille [28] also worked on supervised learning methods for activity recognition. For 

this purpose, they collected datasets from subjects wearing five biaxial accelerometers. These 

subjects performed many activities and twenty were studied for this work. The authors extracted 

four features from the acceleration data: the mean, the energy, the entropy and the correlation. They 

tried various algorithms on these datasets including a C4.5 decision tree (direct successor of ID3). 

They trained a decision table, a nearest neighbor, a naïve Bayes and a C4.5 classifiers using two 

protocols. Under the first one, each classifier was trained on each subject’s activity sequence data 

and tested on a second dataset were they performed a list of task on a sheet. Under the second 

protocol, they trained the classifiers on all dataset for all subjects except one. The classifiers were 

tested on the left out subject’s datasets. This protocol was repeated for all twenty subjects. As you 



can see on the Table 2, they have found that the decision tree outperformed all the other classifiers. 

In fact, only the nearest neighbor gave close results. 

Table 2: Results of the classifiers from Bao & Intille [28] 

Classifier User-specific training Leave one out 

Decision Table 36.32 ± 14.501 46.75 ± 9.296 

Nearest Neighbor 69.21 ± 6.822 82.70 ± 6.416 

Naïve Bayes 34.94 ± 5.818 52.35 ± 1.690 

C4.5 71.58 ± 7.438 84.26 ± 5.178 

3.3 The work of Ravi et al. 

Ravi et al. [29] worked on the same challenge than Bao & Intille [28]: activity recognition 

using accelerometer data. However, they wanted to use only one triaxial accelerometer worn near 

the pelvic region. They also formulate their problem as one of classification. Similarly, they tested 

well-known base classifiers. However, their focus was on meta classifiers. The principles behind 

these meta classifiers is usually to exploit knowledge on the problem (properties) or combine 

multiple classifiers to improve the results. They are divided among two families. The first one is 

voting. It includes methods such as Boosting [30] and Bagging [31] that both can be used in 

combination to classic classifiers to improve their performance. Boosting basically applies a single 

algorithm repeatedly and combine the hypothesis learned each time by voting. The voting is done 

by weighting each training examples depending on either they were correctly or incorrectly 

classified during a learning iteration. Bagging is similar but work by training each classifier on a 

random redistribution of the dataset (it also uses only one algorithm). The second family is named 

stacking and includes Meta Decision Trees (MDT) and Ordinary Decision Trees (ODT) [32]. MDT 

learns a meta-level decision tree whose leaves consist of each of the base classifiers. ODT instead 

specify the class of the given test instance at the leaves level. Therefore, MDT is an improvement 

over ODT which specifies the classifier to use to optimally classify an instance. 

In their work, Ravi et al. [29] have shown that the performance of decision trees in activity 

recognition context can be improved with meta parameters. Nevertheless, the difference in 

performance is often not significant such as in the case of simple decision tree classification results 

(97.29-98.53-77.95-57.00) versus Boosted decision tree (98.15-98.35-77.95-57.00) and Bagged 

decision tree (97.29-95.22-78.82-63.33). However, they have found that MDT and ODT both 

produce higher classification accuracy for all four settings they tested. 

3.4 The Bottom Line 

There are many advantages to use decision trees. First, they create models that are easy to 

understand and use from a human perspective. They are also very robust to missing data and noise 

(which there are a lot in smart homes). Furthermore, the classification (not the learning phase) is 



very fast and therefore makes them well suited for online activity recognition in smart homes. There 

are many models of decision trees that have been exploited in activity recognition researches such 

as the famous ID3 [28] or Meta Decision Tree (MDT) [29]. There are two types of application of 

DTs in the literature. They are often used to perform low granularity AR from a very specific type 

of information. These works focus on the technological platform rather than on the algorithm and 

mostly want to demonstrate the feasibility of their idea. For example, Ravi et al. [29] wanted to 

recognize ADLs from only one simple accelerometer worn by a subject at the belt level. The other 

type use decision trees in combination with another approach of AR (usually clustering, but it can 

also be a classical artificial intelligence approach). The DT then acts as a post filtering classifier 

[33].  

The main problem with DTs is that they require a large set of labeled data to perform well. 

If there is not enough training data, the selected attributes might be misleading and the resulting 

classification performance poor. Figure 5 shows a simple yet stunning example of what can happen 

if the training set is too small. DTs also do not really support data evolution; that is learning must 

be redone if the data change too much (new attributes, new type of values, new number range, etc.). 

Finally, the last but probably the most important limitation for AR is their weakness to distinguish 

a large number of classes within a dataset. 

 

Figure 5: A three examples dataset for shape classification resulting in a strange DT based on the color. 

4 Association Rules 

Association rules mining is often confused with decision trees since the latest can always be 

represented by a set of rules. However, in most situations, rules are different than trees. For 

example, a large tree can often be represented by a smaller equivalent set of rules instead of the 

exhaustive decision nodes of the tree. Additionally, DTs try to split all classes while association 

rules mining considers one class at the time. Finally, association rules do not require labeled dataset. 

They are generally considered as fully unsupervised data mining algorithms. Nevertheless, we will 

see that in the smart home context they are often exploited as semi-supervised algorithms.  

An association rule is a rule of the form condition => consequence that aims to find 

underlying relations between the data. For example, let's say that we have a dataset comprised of 



transactions made at a store by customers. We could discover a rule such as if Saturday and Beers 

=> Potato chips. That rule would mean that very often, when it is Saturday and someone buy beers 

that person will also buy potato chips. Association rules mining algorithms define the terms very 

often with two attributes named the support and the confidence. The first one defines the minimum 

frequency of both the left and right part of the rule. For example, supposes we have the item set 

{{A}, {B}, {AB}, {BA}, {B}, {AB}, {AB}}, the support of AB would be 𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝐴𝐵}) =
3

7
≈

43%. The second, the confidence, is the probability threshold of the right part being true if the left 

part is validated: 

(5) 
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 => 𝑌) = 𝑝(𝑌|𝑋) =

𝑝(𝑋 ∪ 𝑌)

𝑃(𝑋)
=

𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝐴𝐵})

𝑆𝑢𝑝𝑝𝑜𝑟𝑡({𝐴})
 

4.1 Apriori 

The main principles behind the various association rules mining algorithms are very similar. 

To understand those principles, we will take a closer look to the most renowned and perhaps the 

most important algorithm of the family. It is named Apriori and was introduced by Agrawal & al. 

[34]. It relies upon two principles. The first one is the research for frequent k-itemsets whose 

support is higher than a fixed minimum support. The second consists to build the association rules 

from the found frequent k-itemsets. A rule is retained only if its confidence is higher than a fixed 

minimum confidence.  

The Algorithm 2 shows the phase one of the Apriori algorithm. 

Algorithm 2: Apriori, first phase. 

Input:  𝑆 learning data set; minimum support (𝜎) and confidence thresholds 

Output: Set of frequent itemsets 

Fetch the item sets that whose > 𝜎 → 𝐿1 

Set 𝑘 = 1 

Repeat 

 Increase 𝑘 

From 𝐿𝑘−1 finds 𝐶𝑘 the set of frequent itemsets candidates comprising 𝑘 items 

Set 𝐶𝑘 = 𝐿𝑘−1 × 𝐿𝑘−1  

Set 𝐿𝑘 = 0 

For all 𝑒 ∈ 𝐶𝑘 do 

 If 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑒) > 𝜎 Then 

 Add 𝑒 to 𝐿𝑘 

End 

End 

Until 𝐿𝑘 ≠ ∅ 

 

4.2 Generalized Sequential Pattern 

Another interesting algorithm that was also introduced by the team of Agrawal [35] is 

Generalized Sequential Pattern (GSP). This algorithm relies on the same foundation than Apriori 



but was developed to work precisely on data sets of sequence of transactions instead of simple 

transactional data. The meaning is that the algorithm does not only take into account the presence 

of items together, but also the sequential ordering. Another particularity of GSP is its capability to 

exploit a taxonomy by encoding it in the data set. Let's look at an example from the original paper 

of Agrawal. Suppose we have the sequence <(Foundation, Ringworld) (Second Foundation)> and 

the taxonomy shown in Figure 6. To exploit the said taxonomy, all is required to do is to integrate 

it directly in the data set: <(Foundation, Ringworld, Asimov, Nirven, Science Fiction) (Second 

Foundation, Asimov, Science Fiction)>. It is also possible to optimize the encoding in order to 

avoid the explosion of data [35]. 

 

Figure 6: Example of taxonomy from Agrawal et al. [35]. 

 

Another interesting part of the GSP algorithm is the pruning which is done directly on the 

candidate itemsets by introducing the concept of contiguous subsequence. The idea is to suppress 

the candidates who possess a (k-1)-sequence contiguous with a support smaller than the fixed 

minimum support. A subsequence contiguous c of s is a sequence for which one of those three 

criterions is true: 

1. c derivates from s by rejecting either 𝑠1 or 𝑠𝑘 

2. c derivates from s by rejecting an item from a 𝑠𝑖 which possess at least two items 

 

3. c is a contiguous subsequence of 𝑐′ which is a contiguous subsequence of s 

 

For example, considers the set s=<(1, 2) (3, 4) (5) (6)>. The subsequence <(2) (3, 4) (5)>, 

<(1, 2) (3) (5) (6)> and <(3) (5)> are all contiguous subsequence of s. However, <(1, 2) (3, 4) (6)> 

and <(1) (5) (6)> are not. Now let's look at an example dataset to demonstrate how the pruning 

work within GSP algorithm. Considers the seed set consisting of those six frequent 3-sequences: 

1. <(1, 2) (3)> 

2. <(1, 2) (4)> 

3. <(1) (3, 4)> 

4. <(1, 3) (5)> 

5. <(2) (3, 4)> 

6. <(2) (3) (5)> 

The junction step of the algorithm would lead to obtain these two frequent 4-sequence 

considering a support of 100%: <(1,2)(3,4)> and <(1,2)(3)(5)>. The second sequence, 

<(1,2)(3)(5)>, would be abandoned during the pruning because subsequence <(1)(3)(5)> is not part 

of 𝐿3 (for GSP, the fourth sequence is not equivalent to <(1)(3)(5)>). In fact, this sequence is 



contiguous since the criterions number two is true for it. The next subsection will describe a 

complete smart home solution exploiting rules mining for activity recognition and activity 

prediction. 

4.3 The Work of Jakkula & Cook 

Jakkula & Cook developed a renowned approach of activity discovery for smart home which 

is based on association rules mining. Their system was built in a multi-agents [36] architecture 

where the agents perceive directly the state of the environment from sensor’s output raw data.  

They collected temporal information constructed from Allen’s intervals calculus presented 

in [24]. Their goal was to process raw data to discover frequent sequential patterns. In that case, it 

enables the discovery of temporal links existing between frequent events. For example, if recorded 

data tends to demonstrate that every time Take Tea happens the kettle is activated soon after, the 

recognition system will infer a temporal rule from Allen’s thirteen relations (Boil Water after Take 

Tea). Supposing that a lot of training data are available, Jakkula & Cook’s model works as follows. 

First, the temporal intervals are found using the timestamp of events and the on/off state of binary 

sensors. The algorithm that associates these intervals to one of Allens’ relations is illustrated below 

(Algorithm 3): 

Algorithm 3: Temporal Interval Analyzer [26]. 

Input:  𝐸 ={set of events} 

Output:  Set of Allen's relation 

Repeat 

 While (𝐸𝑖  && 𝐸𝑖+1) 

 Find pair ON/OFF events in data to determine temporal range 

Read next event and find temporal range 

Associate Allen’s relation between events 

Increment Event pointer 

End 

Until end of input 

 

The algorithm loops until all the pairs of events are compared. Between each pair, it 

establishes the Allen’s relationship from the beginning and end markers of both events.  

The second step in their model is to identify frequent activities or events that occur during a 

day to establish a reduced set of activities. This step is mandatory because there are too much data 

from smart home sensors, and many potential anomalies are just noise that should be ignored. They 

accomplish this task using the Apriori algorithm [37] that was described previously. In their work, 

Jakkula & Cook not only demonstrated that temporal relationships provide insights on patterns of 

resident behaviors, but also that it enhances the construction of other smart home assistance 

algorithms. To do so, they calculated the probability that a certain hypothetic event occurs or not, 



given the observed occurrence of other events temporally related. It is done from the frequency of 

the nine relationships out of thirteen they determined that could affect anomaly detection: before, 

contains, overlaps, meets, starts, started-by, finishes, finished-by and equals. The formula to 

calculate the evidence of the occurrence of an event X is given by the observation of other events 

(such as Y) that are temporally related (from previous learning phase). The equation 6 below allows 

such calculus: 

(6) 𝑃(𝑋|𝑌) = |𝐴𝑓𝑡𝑒𝑟(𝑌, 𝑋)| + |𝐷𝑢𝑟𝑖𝑛𝑔(𝑌, 𝑋)| + |𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑𝐵𝑦(𝑌, 𝑋)|

+ |𝑀𝑒𝑡𝐵𝑦(𝑌, 𝑋)| + |𝑆𝑡𝑎𝑟𝑡𝑠(𝑌, 𝑋)| + |𝑆𝑡𝑎𝑟𝑡𝑒𝑑𝐵𝑦(𝑌, 𝑋)|

+ |𝐸𝑞𝑢𝑎𝑙𝑠(𝑌, 𝑋)| / |𝑌| 
 

 

That equation gives the likelihood of X considering Y. To combine evidence of X from 

multiple events that are in temporal relationship with X, we have to improve the equation. Consider 

the events Z, Y that had been observed in this order, the prediction of X is given by the formula 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑥 = 𝑃(𝑋) that is calculated as follows (7): 

(7) 
𝑃(𝑋|𝑍 ∪ 𝑌) =

𝑃(𝑋 ∩ (𝑍 ∪ 𝑌))

𝑃(𝑍 ∪ 𝑌)
= 𝑃(𝑋 ∩ 𝑍) ∪

𝑃(𝑋 ∩ 𝑌)

𝑃(𝑍)
+ 𝑃(𝑌) − 𝑃(𝑍 ∩ 𝑌)

= 𝑃(𝑋|𝑍). 𝑃(𝑍) + 𝑃(𝑋|𝑌).
𝑃(𝑌)

𝑃(𝑍)
+ 𝑃(𝑌) − 𝑃(𝑍 ∩ 𝑌) 

From the formula, anomalies can be detected and predictions can be made. If an event X as 

a probability approaching 1, then it is considered as most likely to occur. On the other hand, if its 

probability is close to 0, it will be considered as an unusual event and will be ignored from further 

predictions. The final step is to use an enhanced version of the Active LeZi (ALZ) [38] algorithm 

for the prediction by adding these discovered temporal rules as input data. This predictor is 

sequential and employs incremental parsing and uses Markov models. It should be noted that ALZ 

improved could be used for anomaly detection. This could be done by using the prediction as input 

in an anomalies detection algorithm and by comparing prediction sequence with observations. 

Thus, if the new observation does not correspond to the expected event, an assisting sequence could 

be triggered. The add-on to the Active LeZi is shown below (algorithm 4): 

Algorithm 4: Temporal Rules Enhanced prediction. 

Input:  Output of ALZ 𝑎, Best rules 𝑟, Temporal dataset 

While (𝑎! = 𝑛𝑢𝑙𝑙) 

 Repeat 

 Set 𝑟1 to the first event in the first best rule 

If (𝑟1 == 𝑎) Then 

 If (𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛! = "𝐴𝑓𝑡𝑒𝑟") Then 



 Calculate evidence 

If (𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒 > (𝑀𝑒𝑎𝑛 + 2 𝑆𝑡𝑑. 𝐷𝑒𝑣. )) Then 

 Make event in the best rule as next predictor output 

Else 

 *Get next predicted event and look for their temporal relation in the 

temporal relations database based on the frequency. 

If the relation is after again Then  

 Go to * Until no more after relations found then calculate evidence  

If high Then predict; 

Else Calculate evidence and if high then predict this event based on the 

relation; Continue. 

End 

End 

End 

Until end of rules 

End While 

 

Following the creation of this algorithm, they have conducted experiments that can be seen 

in Table 2 below. It shows the accuracy of the observed prediction performance on real data sets 

and synthetic. There is a performance improvement in the prediction of activities of the resident of 

the intelligent environment. The main reason for the important error rate is the small amount of 

data in the datasets used for learning. The search for knowledge-based temporal rules is a new area 

of research in smart homes and should be further explored in the future. Note that the use of 

temporal relationships provided a unique new approach for prediction. 

Table 2: Comparison of ALZ prediction with and without temporal rules 

Datasets Percentage accuracy Percentage error 

Real (without rules) 55 45 

Real (with rules) 56 44 

Synthetic (without rules) 64 36 

Synthetic (with rules) 69 31 

 

 

4.4 The work of Bouchard & al. 

In the same line of idea of Jakkula & Cook [23], Bouchard & al. [39] worked with 

association rules mining for activity recognition in a smart home. To do so, they exploited the 

topological relationships that exist between entities present in the smart environment. It 

was done by using the framework of Egenhofer & Franzosa [40] which defines the relation 

between two entities 𝑒1 et 𝑒2 with the formal intersection structure between their interior 

(°) and boundary (𝜕)  points: < 𝜕𝑒1 ∩ 𝜕𝑒2, 𝑒1° ∩ 𝑒2°, 𝜕𝑒1 ∩ 𝑒2°, 𝑒1° ∩ 𝜕𝑒2 >. By using the 

simple invariant empty property of sets, there are sixteen possible relation types. However, 

only eight exist for physical regions without holes.  

In their model, activities are defined by a set of constraints 𝐾 such that: 



(8) 𝐾 = {𝑇(𝑒1, 𝑒2)|𝑒1, 𝑒2 ⊆ 𝑂 × 𝑂 ∪ 𝑅 × 𝐴} 

 

where T is a topological relation, O is a physical object, R is the resident and A is a logical area of 

the smart home. The recognition process consists then to evaluate the plausibility of each ADLs in 

the knowledge base from the constraints observations made in the environment. The plausibility is 

calculated by using the neighborhood graph of the topological relationships. Considering that the 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  function returns the percentage of similarity from 0 to 100% between observed 

topological relationships and those known to define an activity, the scoring of an activity (𝑎𝛿,𝑖) for 

a single iteration 𝑖 is: 

(9) 

𝑎𝛿,𝑖 = ∑ ∑ 𝜑 ∗ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(

𝑙𝑗∈𝐿

𝑚=𝑙0

𝑎𝑡,𝑖∈𝑎𝑇

𝑛=𝑎𝑡,0

𝑛, 𝑚) 

where 𝑎𝑇 is the set of topological relationships defining the activity 𝑎. It is the same calculation for 

the topological relationships implying the resident and a smart home zone. The next step of the 

algorithm is to choose the most plausible activity that is ongoing. In other words, it has to choose 

which ADL best explains the observations made up until the current iteration. The plausibility of 

an activity after 𝑖𝑐 iterations is calculated by the function below (10): 

(10) 

𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑎) = ∑ 𝑎𝛿,𝑖 ∗ 𝜙𝑖𝑐−𝑖

𝑖𝑐

𝑖=0

 

That is, the plausibility of 𝑎 is the sum of all the points gained modulated by an inverted exponential 

function. The constant parameter 𝜙 ∈ (0, 1) modulates the speed at which the function tends to 0. 

Bigger it is, the longer iteration's score has an impact. The last step is to normalize the points gained 

by the activities with equation 11: 

(11) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐴𝐷𝐿 = ⋃
𝑠𝑐𝑜𝑟𝑒(𝑎𝑖)

∑ 𝑠𝑐𝑜𝑟𝑒(𝑥𝑗)
𝑥𝑗∈𝐴𝐷𝐿

𝑗=0

𝑎𝑖∈𝐴𝐷𝐿

𝑖=0

 

The ADL with the highest score is the one selected as currently being realized. They 

exploited GSP and Aprori to automatically build an activity library for their recognition algorithm. 

To collect their datasets, they used a real subject that performed four different activities three time 

each. They collected more than 350 000 lines of data which they used with both GSP and Apriori. 

From the learned spatial rules, they were able to recognize 100% of the activities in real time in the 

smart home. 



4.5 The Bottom Line 

As you can see, association rules mining approaches are very interesting and more general 

than DT. Due to their inherent working, they are perfectly adapted to learn logical rules about 

activity of daily living and be exploited for AR. Despite this, association rules mining usually 

results in an important number of trivial and non interesting rules. That is, a human usually needs 

to check all the extracted rules in order to find the few that could be exploited. This supplementary 

step often require a lot of efforts and time and constitutes one of the major limitations. Additionally, 

the collected dataset is not always adapted to this kind of algorithms. They work well on logical 

information such as spatial or temporal relationship, but are less suited to deal with raw data from 

sensors. Thus, it is often necessary to conceive an ad hoc method to transform the data into an 

appropriate form. Finally, the method is not working well for rare items. Due to the high 

dimensionality of our data, frequent patterns might not be that frequent in real contexts. 

 

5 Clustering 

To address the issues that exist with DTs and association rule mining, many researchers aim 

to exploit completely unsupervised learning. Clustering could be a good solution since it can extract 

similar data automatically from unlabeled data. The idea behind this type of algorithm is simple. 

The goal is to find clusters in the dataset that could separate the records into a number of similar 

classes. A cluster is, in that context, a set of similar objects, where similarity is defined by some 

distance measure. The goal of the distance measure is to obtain clusters with a high intraclass 

similarity and a low interclass similarity. The distance measure should respect these four properties: 

1. 𝑑(𝑥, 𝑦) ≥ 0 

2. 𝑑(𝑥, 𝑦) = 0 𝑖𝑓𝑓 𝑥 = 𝑦 

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

4. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

Among the popular known distances, here are respectively the Euclidian distance, the 

Manhattan distance and the Minkowski distance: 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
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Euclidian Manhattan Minkowski 

The clustering problem is a difficult challenge because the attributes  (or features) and their 

values that differentiate one cluster from another are not known.  There is no data examples to tell 

what features differentiate objects that belong to different clusters, and as the size of the dataset 



increases, the number of clusters, as well as the number and type of differentiating factors might 

change. Moreover, there is no guide to indicate what constitutes a cluster and the success of the 

clustering algorithms is influenced by the presence of noise in the data, missing data, and outliers.  

5.1 K-Means 

The most important clustering algorithm is without a doubt the K-Means [41]. The goal of 

this algorithm is to split a dataset into k clusters where the value of k is selected beforehand by the 

user. The first step of the algorithm is to select k random data points as the center of each cluster 

from the data space 𝐷 which might comprise records that are not part of the training set 𝑆. Then, 

the other data points (or records) are assigned to the nearest center. The third step is to compute the 

gravity center of each cluster. These 𝑘 gravity centers are the new centers for the clusters. The 

algorithm then repeats until it reaches stability. The stability means that none of the data points in 

𝑆 change of cluster from an iteration to another or that the intraclass inertia is now smaller than a 

certain threshold. The Algorithm 5 details the K-Means process: 

Algorithm 5: K-Means algorithm 

Input:  𝑆 the dataset, 𝑘 the number of clusters to create 

Output: Set of 𝑘 clusters 

Set the intraclass inertia 𝐼𝑤 = ∞ 

Select 𝑘 center points 𝑐𝑗𝜖𝐷 

Repeat 

 For (𝑗𝜖{1, … , 𝑘}) 

 Set cluster 𝐺𝑗 = ∅ 

End 

For (𝑖 = 1 𝑡𝑜 |𝑆|) 

 Set 𝑗∗ = argmin
𝑗𝜖{1,…,𝑘}

𝑑(𝑠𝑖, 𝑐𝑗) 

Set  𝐺𝑗∗ = 𝐺𝑗∗ ∪ 𝑠𝑖 

End 

For (𝑗𝜖{1, … , 𝑘}) 

 Set 𝑐𝑗 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐺𝑗 

End 

Calculate 𝐼𝑤 

Until 𝐼𝑤 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

To really understand the algorithm, we have to specify two concepts: the gravity center and 

the intraclass inertia. The center of gravity of a dataset 𝑋 described by 𝑝 features (attributes) is a 

synthetic data equal to the average 𝑎 of each attributes in 𝑋: 

(12) 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = (𝑎1, 𝑎2, … , 𝑎𝑝) 

The inertia of a dataset 𝑋 of |𝑋| records is defined by equation 13: 

(13) 

𝐼𝑋 = ∑ 𝑑2(𝑥𝑖, 𝑔)

 |𝑋|

𝑖=1

 



where g is the gravity center of 𝑋 and 𝑥𝑖 the 𝑖𝑡ℎ record of the dataset. The function 𝑑2 represents 

the Euclidian distance. Finally, the intraclass inertia 𝐼𝑤 is given by the following calculation (14): 

(14) 

𝐼𝑤 = ∑ 𝑤𝑖𝐼𝑖

𝑘

𝑖=1

 

where 𝑤𝑖 is the weight of the 𝑖𝑡ℎ cluster and 𝐼𝑖 its inertia. If the data have all the same weight, this 

weight is calculated by using the number of elements member of the cluster 𝐺𝑖  and using the 

formula 15: 

(15) 𝑤𝑖 = |𝐺𝑖|/|𝑋| 

We will now look through a visual example of how K-Means works. Suppose that the dataset 

is visually represented in a Cartesian plane as shown on Figure 7(a). In this example, the goal is to 

find three clusters, therefore the parameter k is set to three. The Figure 7(b) shows a possible 

initialization for the center points of these three clusters. The records of the dataset are assigned to 

the nearest center. 

 

Figure 7 : (a) The dataset before the beginning. (b) Example of initialization with three clusters.  

 

Then, as explained, the centers of gravity of each cluster are computed from the instances 

they contain. The data records are reassigned accordingly from their distance to the new centers 

(see Figure 8(a)). Finally, the process is repeated until stability is reached. The Figure 8(b) shows 

the final clusters in our example. 

 

Figure 8: (a) New clusters after calculation of the new centers. (b) Final clusters. 

 



The K-Means algorithm is a fast algorithm: it is considered as an algorithm of linear 

complexity. In fact, it is considered as one of the fastest clustering algorithms, and it usually 

requires a small number of iterations to find the final clusters [19]. However, there are many 

drawbacks to the exploitation of this algorithm. First of all, the final clusters are highly dependent 

on the initial centers that were selected semi randomly. Second, the algorithm converges to local 

minima. That is, the centers of each cluster move toward a reduction in the distance from their data 

but there is no guaranty that the global distance will be minimal.  

An improved version named K-Means++ was introduced [19] and has for goal to select the 

center of the first cluster such that it has a uniform probability distribution. Then, the subsequent 

centers are determined such that their position is proportional to a square of a certain distance value 

from the first one. That enhancement improves the execution speed and also the precision of the 

results. However, there is a last problem that remains. To work, the user of K-Means must know 

the number of clusters beforehand. In the smart home context, it is usually not possible to do since 

we do not know in advance the number of ADLs that have been realized in the training dataset. 

Therefore, a clustering algorithm that does not require to specify k the number of clusters is 

required. 

5.2 Density based clustering 

The first spatial data mining algorithm we present is named Density-Based Spatial Clustering 

of Applications with Noise or simply DBSCAN [42]. It is a clustering algorithm that supports noise 

in the dataset. The goal of this algorithm is to address two of the problems of K-Means based 

algorithms. The first one is the weirdly shaped clusters that cannot be recognized with K-Means. 

The second is the noise that is necessarily assigned to one of the clusters with K-Means algorithm. 

The Figure 9 shows three sample dataset taken directly from an example of Ester original paper. A 

human can easily find the clusters just by looking at each dataset, but K-Means will give poor 

results on the latest two. 

 

Figure 9: Three samples dataset from the original paper of Ester.  

 

DBSCAN is based on four important definitions to establish the notion of dense clusters of 

points. The first definition is the 𝜖 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of a point which come from mathematical 

topology: 



(16) 𝑁𝜖(𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜖} 

This equation describes that 𝑞  is in the 𝜖 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑  of 𝑝 if the distance between 

them is smaller than 𝜖. An intuitive notion of a dense cluster would be to say that each point has at 

least MinPoints in their 𝜖 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑, but it would fail because there are core points and 

border points in a cluster. The second definition introduced by the team of Ester describes the notion 

of directly density-reachable point 𝑝 from a point 𝑞: 

(17) 𝑝 ∈ 𝑁𝜖(𝑞) 𝑎𝑛𝑑 |𝑁𝜖(𝑞)| ≥ 𝑀𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 

That means that 𝑝 is directly density-reachable from 𝑞 if it is in its neighborhood and 𝑞 is a 

core point (second condition). The relation is symmetric if both points are core type. Third, the 

point 𝑝 is density-reachable from a point 𝑞 if there is a chain of points 𝑃1, … , 𝑃𝑛, 𝑃1 = 𝑞, 𝑃𝑛 = 𝑝 

such that 𝑃𝑖+1 is directly density-reachable from 𝑃𝑖. Finally, A point 𝑝 is density-connected to a 

point 𝑞 if there is a point 𝑜 such that both, 𝑝 and 𝑞 are density-reachable from 𝑜. Using these four 

definitions, the authors define a dense cluster as a set of density-connected points. A special set is 

used to comprise the noise. It includes the points that do not belong to any cluster. Figure 10 shows 

visually the concept density reachability and density-connectivity. Algorithm 6 gives the general 

idea of the clustering from the concepts presented. 

Overall, DBSCAN possesses two important advantages. First, it can be used for applications 

with noisy data. Second, the clusters can be of varied shape: circular, rectangular, elongated, 

concave, etc. There is also a Generalized version (GDBSCAN) [43] which allows to use the 

algorithm with different distances and with two dimensional-shapes. DBSCAN possesses some 

limitations for AR. It is not fast enough for online use. Additionally, it is made for static spatial 

information rather than changing spatial information such as what we get in smart homes. 

Therefore, it cannot extract the patterns of movement of the various objects in the realization of 

ADLs.  

Algorithm 6: DBSCAN algorithm 

Input:  𝑆 the dataset, 𝑚𝑝𝑡𝑠 the minimum number of points, 𝜖 the neighborhood 

Set 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 = 𝑛𝑒𝑥𝑡𝐼𝐷(𝑁𝑂𝐼𝑆𝐸) 

For (𝑖 = 1 𝑡𝑜 |𝑆|) 

 Set 𝑝 = 𝑆[𝑖] 

If (𝑝. 𝐶𝑙𝐼𝐷 = 𝑈𝑁𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝐷) Then 

 If (𝐸𝑥𝑝𝑒𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑆, 𝑝, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷, 𝜖, 𝑚𝑝𝑡𝑠)) Then 

 Set 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷 = 𝑛𝑒𝑥𝑡𝐼𝐷(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷) 

End 

End 

End 

 



 

Figure 10: (a) Density-reachability. (b) Density-connectivity. 

 

5.3 Moving clustering 

The last algorithm we present is a very different approach to clustering. The algorithm 

presented in [44] aims to develop a mobility based clustering for the monitoring of vehicles' 

crowdedness in metropolis. Their idea is to use solely the current speed of vehicles since a high 

mobility means low crowdedness. The main challenge of their approach is not one of clustering in 

fact; it is to deal with contextual information (e.g. red light, etc.) and the imprecision of GPS data. 

Otherwise, most of their work is based on statistical methods. There are many advantages to 

mobility based clustering. First, it is little sensitive to the size of the sample. Second, it does not 

require precise position and support errors in positioning. Finally, it naturally incorporates the 

mobility of different objects such as vehicles. Even through the model is not general enough to be 

directly applied to our problematic, we found the idea innovating and it inspired us in the quest for 

a new spatial data mining method. Still, mobility based clustering is new and much work remains 

to do to obtain interesting accuracy. 

5.4 The Bottom Line 

Clustering seems to be a very good opportunity for AR, but only few approaches have 

successfully exploited it [16]. Moreover, every time it is with a small number of low granularity 

activities. For example, Palme et al. [45] used completely unsupervised method that extracted the 

most relevant object to represent an ADL (key object). It is limited by the uniqueness requirement 

of the key object. In general, however, there are many reasons that explain why very few 

approaches exist. First of all, the complexity of information gathered from multiple sensors in smart 

home limit the ability of a standard clustering algorithm to spit correctly the data. In fact, an 

algorithm such as K-Means is not able to distinguish noise from interesting information. Second, 



most of the clustering algorithms need the initial number of clusters to work correctly and those 

that do not are very slow (high complexity). Finally, standard clustering algorithms do not fully 

exploit the ADL information embedded in the dataset. For example, they ignore many fundamental 

spatial aspects such as the topological relationships or the movement of entities. 
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