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Abstract—One of the greatest challenge of research on smart 

homes is to be able to recognize the ongoing Activity of Daily 

Living (ADL) in real-time and make prediction on the future 

action of the resident. To accomplish this task, it is important to 

have accurate information. In this paper, we present a novel 

passive RFID Indoor Tracking System (ITS). The goal of this ITS 

was to create a simple solution from data mining that could be 

easily deployed in any smart environment without requiring 

specialized human expertise on RFID. The tracking average 80% 

of accuracy and show promising results for large scale 

deployment. 
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I. INTRODUCTION 

Assistive technologies have gained traction in the ambient 
intelligence research community over the past few years [1]. 
Some believe that they could be exploited to counter the effect 
of the world population aging [2]. For example, it is predicted 
that health care costs will continue to grow at a faster rate than 
the economy for the next decades [3]. Toward that goal, many 
research laboratories around the world are working on assistive 
smart home [4, 5] to enable aging in place and thus limiting the 
need of costly human resources. A smart home is a living place 
enhanced with a wide range of sensors, actuators and effectors 
[6]. One of the main challenge is the fundamental recognition 
(and prediction) of the inhabitant ongoing Activity of Daily 
Living (ADL) [7]. The main limitation of the literature on 
activity recognition is the low granularity of the ADLs that can 
be recognized by the proposed methods. To palliate to this 
issue, it is required to obtain more information on the state of 
the environment in which the ADL is realized. To do so, some 
opt to define precise models of ADL in a large logical library 
[8], but it is a very difficult and time consuming task. It can 
also be addressed by exploiting video cameras that enable to 
capture much more information. However, vision sensors and 
wearable [9] are often considered as more invasive than 
ambient technologies [10]. 

Many researchers such as the team of the LIARA lab and 
the team of the DOMUS lab are turning toward the exploitation 
of passive RFID technology to acquire spatial information on 
the environment. To do so, daily life objects in the smart home 
can be equipped with tags in order to be located by antennas 
distributed into the environment. The problem of developing 

passive RFID Indoor Tracking System (ITS) is also well 
documented in the literature [11]. However, the existing 
methods are generally designed for robots tracking or industrial 
contexts which are not adapted to the tracking of objects inside 
a busy smart home. Additionally, most of them depends on 
mathematical models that must be precisely configured and 
tweaked. Mathematical models are exploited to enable high 
precision, but in our context, it is more important to have an 
accurate and a simple to implement system.  

For the sake of repeatability and to contribute further to the 
research community, all datasets collected for the experiments 
presented in this paper are available online on Dr. Bouchard 
website: www.Kevin-Bouchard.com. 

II. RELATED WORK 

In this section, we present the main families of approaches 
to passive RFID positioning and tracking. Most algorithms that 
can be found in the literature are based on the reference tags 
principle first exploited by the LANDMARC system [12]. The 
basic idea, is to exploit the Received Signal Strength Indication 
(RSSI) of nearby tags fixed at known positions to adjust the 
RSSI of the tracked tags. The method can be improved with 
various statistical filters [13]. LANDMARC based systems 
work very well in general, but they need to be exploited on a 
two-dimensional plane. The second family of algorithms is 
based on trilateration [14] and triangulation principles [15]. 
Trilateration uses RSSI and convert it to distance from 
antennas to draw imaginary circles. The position is the 
intersection point between three circles. Triangulation cannot 
be performed with all RFID systems. To do it, it requires to 
have the capability to calculate the angle of arrival. It is with 
the angles from three antennas that an intersection point can be 
found. Finally, the last family exploits data mining and other 
learning algorithms. However, work on this family are scarce 
and mostly regards other wireless technologies. For example, 
Yim et al. [16] exploited wireless local area network access 
point to build a decision tree during the off-line phase in order 
to determine the user's location.  

III. METHODOLOGY 

In this research, the goal was to design a new Indoor 
Tracking System (ITS) capable of tracking daily life objects in 
real time in a smart home from passive RFID tags. The ITS 



needed to be simple to implement yet generalizable to new 
smart home infrastructure. It was chosen to create a qualitative 
ITS which return a general logical zone instead of a precise 
position. This system was created with Decision Trees (DTs). 
There are many advantages to use DTs for tracking. First, the 
training process is very simple to reproduce. It is not necessary 
to be an expert to achieve it. Second, the method can be 
adapted to new RFID infrastructure easily by simply repeating 
the learning phase. Third, the tracking corresponds mostly to 
traveling a tree which is very fast. The rest of this section is as 
follow: we first give some details about our positioning system, 
then we present the object we tracked. 

A. Indoor positioning system 

To begin with our methodology, we first need to describe 
the most important part of an ITS, the positioning system. In a 
previous experiment, we built a qualitative indoor positioning 
system (IPS) using decision trees, more precisely a random 
forest. Back then, we tested several algorithms (C4.5, CAART, 
Neural Networks, etc.) and found that a random forest resulted 
in the best overall accuracy for a fast training which is a very 
important criterion in our context. Therefore, for the ITS, we 
use a random forest of 250 random trees built with the data 
from the first experiment. This IPS as an accuracy ranging 
from 80% to 95% depending on the room of our smart home. 
The qualitative tracking relies upon named zones of a certain 
dimension. These dimensions range from 20cm x 20cm in the 
kitchen and the dining room to 75cm x 75cm in the hall and the 
living room. Otherwise, it is 60cm x 60cm.  

When we built the IPS, the antennas were set to emit at 
interval of 750ms and we recorded fifty readings per zone. The 
IPS uses twenty antennas disposed strategically to cover all of 
the apartment. Fig. 2, shows a map of the DOMUS apartment. 

The map shows all the qualitative zones used by the IPS. The 
tracking algorithm also uses these zones. The movement of the 
tracked object is a directed sequence of zones. To each room is 
associated a different random forest trained with a different 
dataset. The IPS uses six different datasets containing fifty 
classified readings from each zone. We consider that the room 
where the activity is happening is known. 

B. Tracked object 

Once we have an accurate positioning system, we need an 
object to track. The same object used to create the IPS was 
exploited again. It is a reusable plastic bottle of water of about 
600ml of capacity. Four class 3 passive RFID tags are installed 
on it, each one facing a different direction. This way, we ensure 
that there is always a tag directly facing an antenna, thus 
increasing the stability of the Received Signal Strength 
Indication (RSSI). Then the four resulting readings are 
programmatically merged into a single one containing the 
maximal value for each antenna. Therefore, a reading from the 
bottle consists in a vector of twenty integer representing the 
highest value collected by tags during a certain interval of time. 
When building the IPS, this certain interval was 750ms. 
However, this is way too slow for a real time tracking system. 
The interval was reduced to the minimal value achievable with 
our passive RFID system of 20ms. 

C. Collecting a dataset 

The next and final step of the physical part of our 
experiment was to gather data associated with paths to track. 
To do so, four plausible paths for each room were created (i.e.: 
trajectories that could be part of a normal activity of daily 
living). We tried to cover most of the daily living surface. 
Paths also have a varying length, matching the activity they 
tend to mimic. The paths were precisely drawn in the smart 
home with electrical tape. When taking measure, the 
participant was ordered to place the bottle over the tape and 
moves at slow speed following the tape. This process was 
repeated ten times for each path. In total, this first practical 
experiment gave us 240 paths we can evaluate accuracy on. 

IV. EXPERIMENTATION AND RESULTS 

An ADL recognition algorithm like the one we planned to 
design needs a real-time tracking system. In the previous 
section, we presented how we gathered the data required to 
build this system. In this section, we first present how we 
evaluated the accuracy of our tracking system, then we present 
the filters we used in order to increase the accuracy.  

A. Accuracy evaluation 

There are many ways to evaluate the accuracy of a tracking 
system. We chose to only compare the practical sequence of 
crossed zones versus the theoretical sequence, the path. There 
again, there were many possible metrics. Here are the four we 
selected. 

1) Targeted Zones Found 
This first metric (TZF) is purely statistical. Let S be the set 

containing the theoretical zones and P the set of the zones 
found by the tracking system. Then, the number of targeted 
zones is simply the cardinality of the intersection of those two 

 
Fig.2.  Map of the DOMUS' smart home. The RFID antennas are marked 

by a X. The grid represents the qualitative zones. 

 



bags. To compare sequence between them, we divide this 
number by the cardinality of S. 

2) Sequential Targeted Zones Found 
This second metric (STZF) looks like the first one, but with 

a temporal factor. It counts the number of practical zones that 
are found in the theoretical order. If the theoretical sequence 
says that b1 comes after a1, then the measure will only count 
b1 if the zone a1 has already been seen. The measure does not 
require a1 and b1 to be directly one after the other, only that 
they are in the right order. Once again, we divide the number 
of zones correctly identified by the cardinality of S to compare 
sequences between them.  

3) Levenshtein distance 
The Levenshtein distance (L dist), also referred as the edit 

distance, is a well-known measure to compare sequences. We 
use it to find the difference between the practical sequence and 
the theoretical one. We use an insertion and deletion cost of 
one and a replacement cost of two. As you will see, this 
measure is not very useful with our data because the length 
difference between the practical and the theoretical sequences 
is too important. 

4) Euclidiean distance 
The last metric we used is the Euclidean distance (E dist). 

We need to perform a pre-treatment to make sure both 
sequences are of the same length. To do so, we take the raw 
data from the antennas for the whole path and we divide it in 
|S| bags. We then average each bag to get a single vector that 
we can ask our IPS to classify. We compute the Euclidean 
distance between this averaged zone and the reference zone 
and sum all the distances together to find the distance between 
the theoretical sequence and the practical readings. Finally, we 
divide the sum by |S| to get the average distance of the zones. 
Table I shows the results we obtained with those four metrics 
on the six rooms. As we can see, we do not even reach 50% of 
zone recognition in average, and not even 25% if we consider 
the sequence. The other metrics show that the distance between 
the sequences is reasonable.  The Euclidean distance shows 
that we do not miss by really far for most room. In the kitchen, 
the system only miss by an average of 60cm, which is not 
critical in most cases when doing ADL recognition. 

B. Filters 

The accuracy we got with the raw data indicated us that 
there were a lot of room for improvement using post-treatment. 
While looking at a real-time map of the tracked object, we 
found out that the readings were not really stable, the object 
often teleporting really far of its true position. We developed 
two filters with the goal of stabilising the readings and the 
predicted zones. 

1) Moving Average 
The first filter we implemented is a trivial one, the simple 

moving average (SMA). The idea is to replace each new 
reading by the average of the reading of the N previous ones, 
were N is chosen with regards on the number of readings we 
get for each zone when moving or to simply put, the non null 
readings. The SMA help stabilising our data by significantly 
reducing the effect of noise. In a second time, we extended the 
moving average to its general case. It can be expressed as 

   
        
   
   

   
   
   

  
(1) 

Were    is the weighted average,      is the N
th
 reading 

and     is the C
th
 weight coefficient. Note that we consider N0 

as being the current reading. We also have to divide by the sum 
of all coefficients to make sure they sum to one. We tried four 
different distributions for the weighting. The first weighting 
function we implemented is the inverse natural logarithm 
function. Table II clearly shows that the accuracy increase with 
N, while still staying under the accuracy of the raw data and 
therefore, also under the accuracy of the simple moving 
average. The second distribution we used is a simple 
decreasing linear function. The idea is to decrease the 
importance of older readings in a linear way, as in 

            (2) 

An interesting fact about this function is that the tenth value 
is nullified. Like the log function, the linear function increase 
accuracy as n grow bigger. This is the weight function that 
works best with our data, as is it the only one that achieve a 
gain of accuracy over the raw data. The next function we 
implemented is the inverse exponential function, with a base 2. 
Mathematically, it is 

      
    

In simple words, it means that every older reading weights 
half less than the preceding one when    . We tried many 
value for the modifier  . With     the results are terrible. 
However, with       or        the results are much 
better. The last weighting distribution is the inverse factorial. 
The mathematical expression of our coefficient is 

          

Where    is the factorial of  . Since the factorial rapidly 
increase, the length of the moving average (N) has no impact 
on the result. We therefore only use N=10 and tweak the 
modifier   instead. Of the four weighting distributions we 
tried, the linear one offer the best performance without 
tweaking. However, we were able to obtain higher result on all 
metrics by tweaking the factorial distribution. Both seems to 
outperform the SMA indicating that giving less weight to older 
readings is a good idea. We suppose that better results could be 

TABLE I.     RAW RESULTS 

Metric TZF STZF L dist E dist 

Bedroom 0,333 0,196 68,275 2,578 

Bathroom 0,589 0,311 70 4,804 

Hall 0,538 0,347 41,975 1,287 

Kitchen 0,372 0,179 101,225 3,353 

Living room 0,591 0,327 95,525 2,325 

Dining room 0,114 0,057 71,175 7,101 

Average 0,423 0,236 74,696 3,575 

 



obtained with a more sophisticated tuning of any of the 
distributions. 

2) Limiting neightbor 
The last filter we integrated to our ITS is a less restrictive 

version of the blocking neighbor. Instead of rejecting 
movement between zones that are not neighbor to each other, 
we limit the movement to only one zone at the time. Again, let 
us say the object is in B3. The newly predicted zone by the 
random forest is G1. The filter will determine the object is now 
in C2. Table III shows this filter increase significantly the 
accuracy of our system. Globally, it doubles the accuracy when 
compared to the raw data for all rooms. We reach a 60% of 
sequential accuracy in average. Still, the distance metrics 
remain high, indicating that there are many offset readings that 
increase the distances. 

V. DISCUSSION 

In the previous sections, we saw how we used our indoor 
positioning system to create an indoor tracking system. Before 
conducting these experiments, our hypothesis was that it would 
be easy to build a very accurate tracking system since our 
positioning system was really accurate for a sufficient 
precision. However, we saw in section IV that tracking is not 
really good with only the raw data. Even when the object is not 
moving, it is teleporting everywhere, moving all around the 
room. We discovered that the filter that affect the liberty of 
movement of the object had a better potential. By only 
allowing a moving of one zone at the time, the limiting filter 
was producing plausible paths, with many good sequences in 
them. It would take many consecutive bad readings to make 
this filter diverge from its correct path, reducing their effect 
even more than the moving average. Computationally, it is also 
a really fast filter O(1). The main reason explaining a lower 

accuracy than predicted is the human interferences. Indeed, the 
IPS was built from datasets built without any human in the 
smart home. When a human stands between the object and an 
antenna, the corresponding signal intensity is affected. It 
particularly affects DTs since the decision leading to a zone or 
another does not take the neighborhood into account. 

VI. CONCLUSION 

In conclusion, the system presented is capable of producing 
good indoor tracking accuracy while still being generalizable 
to other smart environments. This system is based on a 
qualitative indoor positioning system that uses zones of 
varying sizes. The main disadvantage of using decision trees 
instead of a classical localization method such as trilateration, 
for example, is that an error causes an unpredictable move, an 
unwanted teleportation. In our future work, our team will 
consider using larger size zones for the IPS and the ITS. The 
team is currently investigating the exploitation of qualitative 
ITS for the problem of activity recognition. 
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