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ABSTRACT
This paper presents a novel Indoor Tracking System (IT-
S) based on passive radio-frequency identification (RFID)
technology. The new ITS exploits decision trees built from
one dataset per room of a smart home. The datasets are
built using a bottle equipped with four class 3 RFID tags
and by dividing each room into qualitative zones. The pa-
per discusses how to exploit positioning from decision trees
to implement real-time tracking. The long term goal of this
ITS is to extract qualitative spatial information to improve
recognition of daily living activities’ granularity. The result-
s obtained are very encouraging as the average accuracy of
the trajectories recognized is over 75%.

CCS Concepts
•Applied computing → Life and medical sciences;
Health informatics;
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1. INTRODUCTION
Technology for assistance is a vast and developing topic of

research capturing the attention of researchers in computer
science, engineering and in other fields [8]. The increasing
attention is mainly due the well-known problem of world
population ageing and its many consequences [11]. It is pre-
dicted that health care costs will continue to grow at a faster
rate than the economy for the next few decades [15]. Assis-
tive technologies could help to limit the impact of ageing
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by decreasing the resources needed for treatment and sup-
port. Toward that goal, many research laboratories around
the world are working on assistive smart home [13] as a way
to increase the autonomy of ageing people. Smart home is
a generic term that can be used to designate a home en-
hanced with simple technologies to increase the comfort of
the resident or reduce energy footprints [9]. In the case of
assistive smart homes, the technologies exploited generally
cover a wide range of sensors, actuators and effectors.

Despite the progress that was achieved by the community
over the last two decades, there are still many challenges
to be overcome in order to successfully deliver assistive s-
mart homes to the public. One of these challenges is the
fundamental recognition (and prediction) of the inhabitan-
t’s ongoing Activity of Daily Living (ADL) [4]. There are
plenty of algorithms and methods designed for that purpose.
The main limitation of the literature is the low granularity
of the recognizable ADLs. To palliate this issue, more infor-
mation is required on the state of the environment in which
the ADL is realized. Many avenues are explored. One is
to define precise models of ADL in a large logical library
[5], however, it requires extensive human labour and such a
library does not evolve easily. It can also be addressed by
exploiting video cameras that enable to capture much more
information. Also, vision sensors and wearable [6] are often
considered more invasive than ambient technologies [7].

Many researchers are turning toward the exploitation of
passive radio-frequency identification (RFID) technology to
acquire spatial information on the environment. To do so,
daily life objects in the smart home can be equipped with
tags in order to be located by antennas distributed into the
environment. The problem of developing passive RFID In-
door Tracking System (ITS) is also well documented in the
literature [16]. Existing methods are generally designed for
robots tracking or industrial contexts which are not adapt-
ed to the tracking of objects inside a busy smart home [14].
Additionally, most of them depend on mathematical models
that must be precisely configured and tweaked [3]. In our
context, it is more important to have an accurate and simple
to implement system with less precision. Indeed, Cartesian
positions is not more informative than knowing it is current-



Figure 1: Reference tag method

ly on the kitchen counter for example.
In this paper, we present a new Indoor Tracking System

(ITS) capable of tracking daily life objects in real time in a
smart home from passive RFID tags. The system only aims
to track objects. The ITS must be simple to implement yet
scalable to new smart home infrastructure. This system is
created with Decision Trees (DTs). There are many advan-
tages to using DTs for tracking. First, the training process
is very simple to reproduce. It is not necessary to be an
expert to achieve it. Second, the method can be adapted
to new RFID infrastructure easily by simply repeating the
learning phase. Third, the tracking corresponds mostly to
travelling a tree which is very fast.

For the sake of repeatability and to contribute further to
the research community, all datasets collected for the exper-
iments presented in this paper are available online on Dr.
Bouchard website: www.Kevin-Bouchard.com.

2. RELATED WORK
In this section, we present the main families of approaches

to passive RFID positioning and tracking. Most algorithms
that can be found in the literature are based on the reference
tags principle first exploited by the LANDMARC system
[12]. The basic idea, shown on Figure 1, is to exploit the
Received Signal Strength Indication (RSSI) of nearby tags
fixed at known positions to adjust the RSSI of the tracked
tags. The method can be improved with various statisti-
cal filters [1]. LANDMARC based systems work very well
in general, but they need to be used on a two-dimensional
plane. They are therefore not adapted to a smart home,
which encompasses furniture and where most of the track-
ing is not performed at floor level. They also mainly use
active RFID tags. These tags allow stronger RSSI and a
longer range than passive tags [12] and thus help the system
to achieve a good performance.

The second family of algorithms is based on trilateration
[3] and triangulation principles [10]. Trilateration uses RSSI
and converts it to distance from antennas to draw imaginary
circles. The position is the intersection point between three
circles. Triangulation cannot be performed with all RFID
systems as it requires the capability to calculate the angle of
arrival and not all RFID readers collect them. It is with the
angles from three antennas that an intersection point can be
found.

Finally, the last family exploits data mining and other
learning algorithms. However, work on this family is scarce
and mainly explores other wireless technologies. For exam-
ple, Yim et al. [17] exploited wireless local area network ac-
cess points to build a decision tree during the off-line phase
in order to determine the user’s location. They have shown
that their technique is simpler to implement and perform

better than the classical fingerprinting methods. Our hy-
pothesis is that it should also perform well with RFID tech-
nology.

3. METHODOLOGY
As mentioned in the introduction, our goal is to create

an Indoor Tracking System (ITS) for objects. Such a sys-
tem needs to know the position of a tracked object at all
times. There are many positioning systems that we could
have used, but we wanted our system to be simple to im-
plement yet scalable. Therefore, we chose a system based
on classical data mining algorithms. The rest of this section
gives details about our positioning system.

3.1 Indoor positioning system
To begin with our methodology, we first need to describe

the most important part of an ITS: the positioning system.
In a previous experiment [2], we built a qualitative indoor
positioning system (IPS) in Java using random forests as
they resulted in the best overall accuracy for fast training,
an important criterion in our context. Therefore, for the
ITS, we use a random forest of 250 random trees built with
the data from the first experiment. This IPS has an accu-
racy ranging from 95% to 99% depending on the room of
our smart home. The accuracy is computed using 10-fold
cross-validation on more than 47 thousands readings. The
qualitative tracking relies upon named zones of a certain
dimension. These dimensions range from 40cm x 40cm in
the kitchen to 75cm x 75cm in the hall, the living room
and the dining room. Zones in the bedroom and the bath-
room have dimensions of 60cm x 60cm. The counter of the
bathroom has a higher precision with dimensions of 30cm
x 30cm. Those sizes were chosen to make sure that most
ADLs would not occur within only one zone.

When we built the IPS, the antennas were set to emit at
intervals of 750ms and we recorded fifty readings per zone.
The IPS uses twenty antennas disposed strategically to cov-
er all of the apartment used in this study. Figure 2 shows
a map of the DOMUS apartment. Antennas are indicated
by crosses. The map also shows all the qualitative zones
used by the IPS and the tracking algorithm. The move-
ment of the tracked object is a directed sequence of zones.
There are six rooms in the apartment. Each room is associ-
ated with a different random forest trained with a different
dataset. The IPS uses six different datasets containing fifty
classified readings from each zone. We consider that, at all
times, we know what room the object is in. We can get this
information from other sensors in the apartment, like mo-
tion detectors. Therefore, there is no need to combine the
random forests.

3.2 Tracked object
Once we have an accurate positioning system, we need an

object to track. The same object used to create the IPS was
used again: a reusable plastic bottle. Four class 3 passive
RFID tags were installed on it, each one facing a differen-
t direction. This way, we ensure that there is always a tag
almost directly facing an antenna, thus increasing the stabil-
ity of the Received Signal Strength Indication (RSSI). Then,
the four resulting readings are programmatically merged in-
to a single one containing the maximal non zero value for
each antenna. Therefore, a reading from the bottle consists
of a vector of twenty integers representing the highest value



Figure 2: Map of the DOMUS home. The RFID antennas are marked by a X. The grid represents the
qualitative zones



Figure 3: Experimental setting in the smart home

collected by tags during a certain interval of time. When
building the IPS, this certain interval was 750ms. However,
this is way too slow for a real time tracking system. The
interval was reduced to the minimal value achievable with
our passive RFID system of 20ms. Given the shape of our
zones, this allowed us to get many readings for each zone
when moving at normal speed.

3.3 Collecting a dataset
In the previous subsections, we explained how the IPS

works. The next and final step of the physical part of our
experiment was then to gather data associated with paths
we would like to track. To do this, we created four plausible
paths for each room (i.e.: trajectories that could be part of
a normal activity of daily living). We tried to cover most of
the daily living surface. Paths also have a varying length,
matching the activity they tend to mimic. While some paths
may overlap others, they are all distinct and no path is a
subpath of a longer one.

Figure 3 shows some paths in the room while members
of the laboratory are taking measurements with the special
object. As you can see, paths are indicated by a black tape.
When taking measurements, the member places the bottle
over the tape and moves at slow speed following the tape,
making sure the bottle stays over it. We repeated this pro-
cess ten times for each path. In total, this first practical
experiment gave us 240 paths to evaluate to accuracy of
the ITS. We took special care to hold the bottle at the same
height as the antennas because the random forests were built
using data collected at this height. To distribute the impact
of human interference with the RFID signal, we hold the
bottle in a different way at each repetition. Sometimes we
would be behind the bottle, while sometimes we would be
in front of it or on the side. This way, we do not always
interfere with the same antenna. Moreover, we changed the
angle of the bottle in our hands to make sure it would not
always be the same tag facing the same antenna.

4. EXPERIMENTATION AND RESULTS
An ADL recognition algorithm like the one we planned to

design needs a real-time tracking system. In the previous
section, we presented how we gathered the data required
to build this system. In this section, we first present how
we evaluated the accuracy of our tracking system, then we
present the filters we used in order to increase the accuracy.

4.1 Accuracy evaluation
There are many ways to evaluate the accuracy of a track-

ing system. We chose to only compare the practical sequence
of crossed zones versus the theoretical sequence, the path
we draw on the floor. Here again, there were many possible
metrics. The four we selected are as follows.

4.1.1 Targeted Zones Found
This first metric (TZF) is purely statistical. It examines

the overall coverage of the path. Let S be the set containing
the theoretical zones and P the set of the zones found by
the tracking system. Then, the number of targeted zones is
simply the cardinality of the intersection of those two bags.
To compare sequences between them, we divide this number
by the cardinality of S.

4.1.2 Sequential Targeted Zones Found
This second metric (STZF) looks like the first one, but

with a temporal factor. It counts the number of practical
zones that are found in the theoretical order. If the theoret-
ical sequence says that b1 comes after a1, then the measure
will only count b1 if the zone a1 has already been seen. The
measure does not require a1 and b1 to be directly one after
the other, only that they are in the right order. Once again,
we divide the number of zones correctly identified by the
cardinality of S to compare sequences between them. None
of our paths use the same zone twice, so this metric does
not have to take repetition into account.

4.1.3 Levenshtein distance
The Levenshtein distance (L dist), also referred as the edit

distance, is a well-known measure to compare sequences. It
consists of counting the number of insertion, deletion and
replacement to transform a string into another one. It is a
measure of dissimilarity often used in text processing or in
bioinformatics to compare DNA sequences. Here, we use it
to find the difference between the practical sequence and the
theoretical one. We use an insertion and deletion cost of one
and a replacement cost of two. As you will see, this measure
is not very useful with our data because the length difference
between the practical and the theoretical sequences is too
important. All distances are in the same range, no matter
the length of the path or the room.

4.1.4 Euclidean distance
The last metric we used is the Euclidean distance (E dist).

But, to use it, we have to change how we consider our data
because otherwise we would not know to what theoretical
zone we should compare a given practical zone. The aim
of the pre-treatment we need to apply is to make sure both
sequences are of the same length. To do so, we take the raw
data from the antennas for the whole path and we divide
it in |S| bags. We then average each bag to get a single
vector that we can ask our IPS to classify. We compute
the Euclidean distance between this averaged zone and the
reference zone and sum all the distances together to find the
distance between the theoretical sequence and the practical
readings. Finally, we divide the sum by |S| to get the average
distance of the zones.

Table 1 shows the results we obtained with those four
metrics on the six rooms. As we can see, we do not even
reach 60% of zone recognition on average, and barely 35%
if we consider the order. As for the other metrics, they



Table 1: Raw results
Metric TZF STZF L dist E dist

Bedroom 0,409 0,230 74,275 2,744
Bathroom 0,610 0,291 76,500 4,501

Hall 0,426 0,245 85,300 5,451
Kitchen 0,845 0,707 79,350 2,338

Living room 0,596 0,321 100,950 2,291
Dining room 0,544 0,374 41,800 2,762

Average 0,572 0,361 76,363 3,348

Table 2: Effect of the moving average in the kitchen
Size Metric
N TZF STZF L dist E dist
5 0.814 0.656 81.225 3.880
10 0.772 0.652 66.150 4.099
20 0.745 0.575 49.025 4.479
30 0.687 0.518 40.85 4.411
40 0.673 0.496 34.125 4.573

show that the distance between the sequences is reasonable.
The Euclidean distance shows that we do not miss by a
substantial difference for most rooms. In the kitchen, the
system only misses by an average of 80cm, which is not
critical in most cases when doing ADL recognition as it is
still precise enough to distinguish the sink from the oven or
one counter from another.

4.2 Filters
The accuracy we got with the raw data indicated to us

that there was a lot of room for improvement using post-
treatment. While looking at a real-time map of the tracked
object, we found that the readings were not stable, the ob-
ject often teleporting far of its true position. So, we devel-
oped four filters with the goal of stabilising the readings and
the predicted zones.

4.2.1 Simple Moving Average
The first filter we implemented is the simple moving aver-

age. The idea is to replace each new reading by the average
of the readings of N previous ones, were N is chosen with
regards to the number of readings we get for each zone when
moving or, to simply put, the non-null readings. This simple
moving average greatly helped to stabilise our data by signif-
icantly reducing the effect of aberrant data. We tried various
values for N and the results are shown in Table 2. We can
see that all metrics except the edit distance decrease when N
increases, indicating that we were using readings that were
too old. The only metric that gets better as N increases is
the edit distance, showing that the simple moving average
tends to create shorter sequences. Table 3 shows the results
for all rooms when using an N of 5. Except for the kitchen,
this filter improved the accuracy everywhere.

4.2.2 Weighted Moving Average
In a second trial, we extended the moving average to its

general case. Instead of giving each reading the same weight,
this version allow us to give more or less importance to the
readings regarding their rank in the average. It can be ex-
pressed as:

Table 3: Results for the moving average
Metric TZF STZF L dist E dist

Bedroom 0,45 0,251 73,475 2,572
Bathroom 0,686 0,323 85,175 4,097

Hall 0,43 0,246 87,250 6,155
Kitchen 0,814 0,656 81,225 3,880

Living room 0,642 0,364 109,775 2,524
Dining room 0,572 0,391 49,825 3,319

Average 0,599 0,372 81,121 3,758

R̄ =

∑N−1
n=0 Cn ∗RN−n∑N−1

n=0 Cn

(1)

where R̄ is the weighted average, RN−n is the N th reading
and Cn is the Cth weight coefficient. Note that we consider
N0 as being the current reading. We also have to divide by
the sum of all coefficients to make sure they sum to one. We
tried four different distributions for the weighting. Those
distributions imply the following functions: the logarithm
function, the linear function, the exponential function with
base 2, and finally, the factorial function.

Logarithmic distribution: The first weighting distribution
is related to the natural logarithm function. This distribu-
tion is defined as follows:

Cn =
1

ln(n + 2)
(2)

We use n + 2 to avoid the part of the logarithm function
that is negative and rapidly growing. This way, we get a co-
efficient that is slowly decreasing, giving less and less weight
to the older results. Table 4 clearly shows that the accuracy
increases with N, while still staying under the accuracy of
the raw data and therefore, also under the accuracy of the
simple moving average.

Linear distribution: A second weight function is a sim-
ple decreasing linear function. The idea is to decrease the
importance of older readings in a linear way, as in:

Cn = 1− 0.1n (3)

An interesting fact about this function is that the tenth
value is nullified. Like the log function, the linear function
increases accuracy as n grows bigger. This is one of the
weight functions that works best with our data, yet not e-
nough to offer an increase in accuracy over the raw data.

Exponential distribution: The third weighting distribution
is related to the exponential function, with a base 2. Math-
ematically, it is:

Cn =
1

2a n
(4)

In simple words, it means that every older reading weighs
half of the preceding one when a = 1. We tried many value
for the modifier a. With a = 1 the results were terrible.
However, with a = 1/8 or a =1 /16 the results were much
better.

Factorial distribution The last weighting distribution is
related to the factorial. The factorial function is the prod-
uct of all positive integers less or equal to a given positive
integer. The mathematical expression of our coefficient is:

Cn =
1

a n!
(5)



Table 4: Effect of N and the weight function with
the moving average in the kitchen

Parameters Metric
N Weight function TZF STZF L dist E dist
5 Log 0,367 0,288 62,125 5,696
10 Log 0,489 0,374 72,975 5,510
20 Log 0,593 0,430 71,375 5,458
30 Log 0,565 0,385 62,725 5,487
40 Log 0,552 0,400 56,3 5,431
5 Linear 0,417 0,315 66,3 5,403
10 Linear 0,533 0,393 74,425 5,364
20 Linear 0,763 0,648 108,475 5,549
30 Linear 0,783 0,600 112,225 5,415
40 Linear 0,789 0,565 83,575 5,778
5 Exp a=1/8 0,426 0,329 67,65 5,438
10 Exp a=1/8 0,666 0,498 84,375 5,277
20 Exp a=1/8 0,685 0,493 76,475 5,323
10 Exp a=1/16 0,661 0,499 85,475 5,275
20 Exp a=1/16 0,733 0,580 74,525 5,271
10 Fact a=1/4 0,623 0,455 92,225 5,837
10 Fact a=1/8 0,821 0,677 113,200 5,237
10 Fact a=1/16 0,886 0,776 117,700 5,532
10 Fact a=1/32 0,875 0,756 120,125 4,949
10 Fact a=1/128 0,878 0,720 117,375 4,441

Where n! is the factorial of n. Since the factorial rapidly
increase, the length of the moving average (N) has no impact
on the result. We therefore only use N=10 and tweak a
instead.

Of the four weighting distributions we tried, the linear one
offered the best performance without tweaking. However,
with tweaking we were able to obtain good results on all
metrics and even higher accuracy by tweaking the factorial
distribution. The factorial distribution seems to outperform
the SMA indicating that giving slightly less weight to older
readings is a good idea. We suppose that better results
could be obtained with a more sophisticated tuning of any
of the distributions. We saw that the accuracy decreased as
N increased in the SMA. Here, it is generally the opposite,
with the accuracy increasing with N in most distributions.

4.2.3 Blocking neighbour
The blocking neighbour filter prevents teleportation by on-

ly allowing movement between neighbouring zones. For ex-
ample, let us say the object is in B3. Then, the filter will
reject any zone that is not a direct neighbour, namely A2,
A3, A4, B2, B4, C2, C3 and C4. The main issue with such a
filter is when it misses a valid movement. If, for any reason,
the object is now in B6 and the collected readings did not
predict to both B4 and B5, then the filter might be forev-
er stuck thinking the object is in B3 and thus, reject every
new zone. To prevent that, we added a simple counter that
counts all successive rejection by the filter. When a certain
limit is reached, the filter sets its current zone to the pre-
dicted zone. Table 5 shows the results of this filter alone in
all rooms. The results are generally worse than without this
filter, except for the edit distance. Indeed, by rejecting nu-
merous zones, the practical sequence is shorter than before
and therefore less delete operation are needed to equalize
the sequences.

Table 5: Results for the blocking filter alone
Metric TZF STZF L dist E dist

Bedroom 0,254 0,170 30,400 3,501
Bathroom 0,498 0,239 31,575 5,462

Hall 0,337 0,193 33,425 3,438
Kitchen 0,730 0,616 36,825 3,140

Living room 0,480 0,259 39,225 2,741
Dining room 0,467 0,342 22,200 2,939

Average 0,461 0,303 32,275 3,537

Table 6: Results for the limiting filter alone
Metric TZF STZF L dist E dist

Bedroom 0,797 0,653 124,775 2,297
Bathroom 0,886 0,660 236,350 5,732

Hall 0,814 0,711 64,800 1,218
Kitchen 0,963 0,931 146,300 2,171

Living room 0,913 0,753 207,250 2,143
Dining room 0,835 0,730 91,900 2,329

Average 0,868 0,740 145,229 2,648

4.2.4 Limiting neighbour
The last filter we integrated to our ITS is a less restrictive

version of the blocking neighbour. Instead of rejecting move-
ment between zones that are not neighbouring each other,
we limit the movement to only one zone at the time. A-
gain, let us say the object is in B3. The newly predicted
zone by the random forest is G1. While the blocking filter
would only reject G1 and say the object is still in B3, this
new filter will say the object is now in C2. Table 6 shows
how greatly this filter increases the accuracy of our system.
Globally, it increases the accuracy by 30% when compared
to the raw data for all rooms. We reach a 74% of sequential
accuracy in average. Results would be even greater if not for
the bedroom and the bathroom where results are still low.
However, this is consistent with the fact that these room are
covered by less antennas than the others. Still, the distance
metrics remain high, indicating that there are many offset
readings that increase the distances. The effect of this filter
can be seen on Figure 4. The opacity of the zones increase
given the number of times they are visited. The left side of
the figure shows what it looks like when no filters are ap-
plied. The right side shows the effect of the limiting filter.
It is obvious that the limiting filter concentrates the zones
around the correct path.

4.3 Combining filters
We previously said that it would not make sense to use the

first two or the last two filters together, but nothing prevents
us from combining the moving averages with the zone filters.
As the blocking neighbour does not perform well, we will
only present the results when combining with the limiting
neighbour. In Table 7, we see that the combination of the
simple moving average (n=5) with the limiting neighbour
does not offer any significant gain over the filter alone. It
might be better in certain rooms, but it is worse in others
and so the overall gain is null. We can still see that the edit
distance is reduced by the moving average. In Table 8, we
have the results of combining the same limiting filter with
the weighted moving average. As it was the best fit, we used
the factorial weight function (n=10, a=1/16). Surprisingly,



Figure 4: Map of the kitchen with raw data versus the limiting filter. The green squares show the expected
path and they turn blue when correctly identified by the algorithm. Red squares are wrongly identified zones.

Table 7: Limiting filter with the moving average
Metric TZF STZF L dist E dist

Bedroom 0,820 0,650 159,175 2,689
Bathroom 0,946 0,827 275,650 4,547

Hall 0,762 0,514 204,975 4,886
Kitchen 0,970 0,937 153,000 3,312

Living room 0,926 0,754 205,925 2,368
Dining room 0,843 0,734 99,325 2,989

Average 0,878 0,736 183,008 3,465

Table 8: Limiting filter with the weighted moving
average using factorial

Metric TZF STZF L dist E dist
Bedroom 0,895 0,704 195,425 4,561
Bathroom 0,963 0,773 316,025 4,721

Hall 0,746 0,594 291,525 4,937
Kitchen 0,944 0,926 188,150 3,518

Living room 0,923 0,814 235,000 2,226
Dining room 0,826 0,723 112,050 2,295

Average 0,883 0,756 223,029 3,710

it produces the same results that we see in Table 7, strongly
suggesting the limiting filter is the key to our improvements.

4.4 Effect of sampling speed
We said earlier that our IPS was trained with the anten-

nas set at 750ms between readings and that we reduced it to
20ms for this experiment. Such a change could have greatly
affected the accuracy of our IPS. To make sure it did not,
we conducted a simple experiment. We designed a special
path over the kitchen counter and we crossed it with the
water bottle two times, one at normal speed with antennas
set at 20ms and one at very slow speed with antennas set at
750ms. Our simple experiment indicated that the accuracy
was better at 20ms when no filters were used. However, this
is certainly because we were still moving too fast when at
750ms between readings, reducing the chance for our ran-

dom forest to predict the right zone at least one time. Still,
the difference in accuracy was small. Further experiments
should be conducted on this subject.

5. DISCUSSION
In the previous sections, we saw how we used our in-

door positioning system to create an indoor tracking sys-
tem. These two systems will ultimately play a crucial role
to increase the granularity and the accuracy of the ADL
recognition in a smart home. However, we saw in section 4
that tracking is not accurate with only the raw data. Even
when the object is not moving, it is teleporting everywhere,
moving all around the room. When we added the moving
average filter, it mostly stopped teleporting, stabilising to
the correct zone or the neighbouring ones. Then, we tried to
use a weighted moving average to see if the motionless object
would gain total immobility. It did not, because there were
too many incorrect predictions by the IPS. Indeed, most of
the tuning tests were made in the kitchen, where the IPS
had an accuracy of about 95%. So, one out of twenty times
a bad reading happens and the older readings cannot com-
pensate for it given their deceasing weight. Moreover, all
versions of the moving average became less accurate when
we started moving the object.

On the other hand, filters that affect the liberty of move-
ment of the object have better potential. The blocking filter
kills almost all movement for the motionless object, as it was
designed to do, but is too aggressive. If it missed the first
valid movement it would never be able to move after that.
The fail limit we described in section 4 allowed us to reduce
the effects of this constraint, but it was still too aggressive
to catch all valid movements. By only allowing moving of
one zone at a time, the limiting filter was better adapted.
It could never get stuck like the blocking filter. It allowed
us to move to valid zones that were never reached by the R-
FID readings. It also produced plausible paths, with many
valuable sequences in them. It would take many consecu-
tive bad readings to make this filter diverge from its correct
path, reducing their effect even more than the moving av-



erage. Computationally, the filters works quickly. It only
needs compute some subtractions or additions, thus being
of complexity O(1). Figure 4 shows how greatly it concen-
trated all predicted zones to the near path zones. This will
be of great help to the final ADL recognition system.

Overall, our new ITS is easy to implement and sufficient-
ly precise for our purpose. The main factor decreasing the
tracking performance is human interferences. Indeed, the
IPS was built from datasets built without any human in the
smart home. When a human stands between the object and
an antenna, the corresponding signal intensity is affected.
This is clearly the biggest challenge for our system. It par-
ticularly affects DTs since the decision leading to a zone or
another does not take the neighbourhood into account. For
example, if the signal of an antenna decrease and that an-
tenna was the most discriminating for the classification of
this zone, the tree might explore a branch that is irrelevant
and predict a zone far away from the intended one. Since
we cannot simulate all possible ways a human can interfere,
the IPS cannot be altered to take this into account.

6. CONCLUSION
In conclusion, we presented a system capable of indoor

tracking with more than 75% of the exact path recognized.
This system is based on a qualitative indoor positioning sys-
tem that uses zones of varying sizes. While the accuracy may
not seem high, the system also recognizes nearby zones to
the path, which is sufficient for our final goal of building a
complete system for the recognition of ADLs using passive
RFID. Therefore, we can say that our method is working,
even if human interference was worse than expected.

The main disadvantage of using decision trees instead of
a classical localization method such as trilateration, for ex-
ample, is that an error causes an unpredictable move, an
unwanted teleportation. In our future work, our team will
consider using larger size zones for the IPS and the ITS. The
team is currently investigating the exploitation of qualita-
tive ITS for the problem of activity recognition and results
should be published within few months. Additionally, the
team will create a tweaking software that will automatically
find the best modifiers for all distributions.
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